
GCPC 2021
Presentation of solutions

GCPC 2021 Solutions

Jury and Testers

Thanks to the jury:

Michael Baer (FAU)
Gregor Behnke (Freiburg)
Alexander Dietsch (FAU)
Andreas Grigorjew (Helsinki)
Florian Leimgruber (TUM)
Felicia Lucke (CPUlm)

Nathan Maier (CPUlm)
Gregor Matl (TUM)
Michael Ruderer (CPUlm)
Gregor Schwarz (TUM)
Paul Wild (FAU)
Michael Zündorf (KIT)

Thanks to our test reader:

Philipp Reger (FAU)

GCPC 2021 Solutions

Statistics

0 50 100 150 200 250 300
0

20

40

60

80

100

120

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

GCPC 2021 Solutions

Statistics

0 50 100 150 200 250 300
0

20

40

60

80

100

120

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

GCPC 2021 Solutions

B – Brexiting and Brentering

0 50 100 150 200 250 300
0

10

20

30

40

50

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Gregor Matl GCPC 2021 Solutions

B – Brexiting and Brentering

Problem
Given a name containing one or more vowels, cut everything off after the last vowel
and instead append the suffix “ntry”.

Solution
In C++:
include <bits/stdc ++.h>
using namespace std;

int main () {
string subject ;
cin >> subject ;

cout << subject . substr (0, subject . find_last_of (" aeiou ") + 1) << "ntry" << endl;
}

Problem Author: Gregor Matl GCPC 2021 Solutions

B – Brexiting and Brentering

Alternative solution (too late)
Don’t do Brexit in the first place!

Problem Author: Gregor Matl GCPC 2021 Solutions

M – Monty’s Hall

0 50 100 150 200 250 300
0

10

20

30

40

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Alexander Dietsch GCPC 2021 Solutions

M – Monty’s Hall

Problem
A generalised version of the Monty Hall problem: Given d doors with one correct one,
you may select s. Then e unselected wrong doors are opened after which you may
select again. What is the chance of the correct door being among your second
selection?

Solution
Observation: During the first selection you are less likely to hit the correct door
than during the second. ⇒ It is always better to change the selection (like in the
original problem).
Calculate the chance of selecting the correct door with your second selection.
If there are fewer than s unselected doors during your second selection, keep a
number of doors the same (let that number be x). Calculate how likely it is for
the correct door to have been among these x doors during the first selection.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

M – Monty’s Hall

Problem
A generalised version of the Monty Hall problem: Given d doors with one correct one,
you may select s. Then e unselected wrong doors are opened after which you may
select again. What is the chance of the correct door being among your second
selection?

Solution
Observation: During the first selection you are less likely to hit the correct door
than during the second. ⇒ It is always better to change the selection (like in the
original problem).
Calculate the chance of selecting the correct door with your second selection.
If there are fewer than s unselected doors during your second selection, keep a
number of doors the same (let that number be x). Calculate how likely it is for
the correct door to have been among these x doors during the first selection.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

A – Amusement Arcade

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Gregor Schwarz GCPC 2021 Solutions

A – Amusement Arcade

Problem
Given n arcades in a straight line and (n + 1)/2 players who arrive one after another
and always pick the most secluded arcade, where should the first player take a seat so
that everyone can be seated and there is always one empty arcade between two
neighbouring players?

Problem Author: Gregor Schwarz GCPC 2021 Solutions

A – Amusement Arcade

Solution
Whenever n = 2k + 1, the first player can take
a seat on the very first or very last machine and a seating arrangement can be found.
If the first player sits at machine x , she splits
the interval in two parts and sits at the very
end of both intervals. ×

×
If the left and right interval can be expressed by ` = 2a + 1 and r = 2b + 1,
respectively, then a seating arrangement can be found.
Check whether n = 2a + 2b + 1 either by

looping through all possible power-of-two-pairs (less than 4, 000) or
counting the ones in the binary representation of n.

Problem Author: Gregor Schwarz GCPC 2021 Solutions

H – Hectic Harbour II

0 50 100 150 200 250 300
0

2

4

6

8

10

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Alexander Dietsch GCPC 2021 Solutions

H – Hectic Harbour II

Problem
There are two stacks with crates marked 0 to n. The crates 1 to n are moved away in
that sequence. Before collecting a specific crate, all crates on top of it are moved to
the other stack one-by-one first. How often is crate 0 on top of a stack after a crate
has been collected?

Solution
The two stacks can be reinterpreted as a doubly linked list:

Begin of the list is the bottom of the first stack.
End of the list the bottom of the second stack.
The top of the stacks is between two elements of the list.

A removal step can be performed in O(1) by removing the element and setting
the top of the stacks at its position.
Simulate and count how often crate 0 is one of the two top elements.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

H – Hectic Harbour II

Problem
There are two stacks with crates marked 0 to n. The crates 1 to n are moved away in
that sequence. Before collecting a specific crate, all crates on top of it are moved to
the other stack one-by-one first. How often is crate 0 on top of a stack after a crate
has been collected?

Solution
The two stacks can be reinterpreted as a doubly linked list:

Begin of the list is the bottom of the first stack.
End of the list the bottom of the second stack.
The top of the stacks is between two elements of the list.

A removal step can be performed in O(1) by removing the element and setting
the top of the stacks at its position.
Simulate and count how often crate 0 is one of the two top elements.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

H – Hectic Harbour II

Alternative solution
0 can only be on top after the crate next to it was just removed.
Starting from 0 iterate in one direction and repeatedly select the closest bigger
element. Do that in both directions.
The number of selected elements is the number of times 0 will be on top of a
stack.

E.g. in 51203746 the elements 25 and 37 are selected ⇒ 0 will be on top 4 times.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

K – Killjoys’ Conference

0 50 100 150 200 250 300
0

2

4

6

8

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Gregor Behnke GCPC 2021 Solutions

K – Killjoys’ Conference

Problem
You are given a graph G = (V , E). Count the number of bipartitions, i.e. partitions
A] B = V such that no two vertices in A or B are adjacent.

Solution
Consider the connected components C1, . . . , Ck of G in isolation:

For each component, check if it has a bipartition using DFS.
Colour one vertex black, its neighbours white, its neighbours black and so on.
If two neighbours are given the same colour, output impossible.

Within each component the colours may be swapped, so 2k possibilities in total.
One symmetry is remaining: (A, B) and (B, A) are considered the same partition.
Final answer: (2k−1 + 1) mod p

Problem Author: Gregor Behnke GCPC 2021 Solutions

K – Killjoys’ Conference

Problem
You are given a graph G = (V , E). Count the number of bipartitions, i.e. partitions
A] B = V such that no two vertices in A or B are adjacent.

Solution
Consider the connected components C1, . . . , Ck of G in isolation:

For each component, check if it has a bipartition using DFS.
Colour one vertex black, its neighbours white, its neighbours black and so on.
If two neighbours are given the same colour, output impossible.

Within each component the colours may be swapped, so 2k possibilities in total.
One symmetry is remaining: (A, B) and (B, A) are considered the same partition.
Final answer: (2k−1 + 1) mod p

Problem Author: Gregor Behnke GCPC 2021 Solutions

C – Card Trading

0 50 100 150 200 250 300
0

5

10

15

20

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Alexander Dietsch GCPC 2021 Solutions

C – Card Trading

Problem
Given a number of buy orders and sell orders of a card, find the card price that
generates the highest turnover.

Solution
Observation: The optimal card price is one of the prices in the input.
A buyer is always willing to pay less → Starting from highest price, add all buyers
to the next lower price.
A seller is always willing to sell for more → Starting from the lowest price, add all
sellers to the next higher price.
Iterate over all prices and find highest turnover by matching the aggregated
buyers and sellers.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

C – Card Trading

Problem
Given a number of buy orders and sell orders of a card, find the card price that
generates the highest turnover.

Solution
Observation: The optimal card price is one of the prices in the input.
A buyer is always willing to pay less → Starting from highest price, add all buyers
to the next lower price.
A seller is always willing to sell for more → Starting from the lowest price, add all
sellers to the next higher price.
Iterate over all prices and find highest turnover by matching the aggregated
buyers and sellers.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

C – Card Trading

Caveat
Double–precision floating point numbers are not accurate enough. Use extended
precision floats instead. Alternatively turn the input into integers by multiply with 100
and make sure not to accidentally cast the output to a double–precision float when
dividing by 100.

Problem Author: Alexander Dietsch GCPC 2021 Solutions

E – Excursion to Porvoo

0 50 100 150 200 250 300
0

2

4

6

8

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Andreas Grigorjew GCPC 2021 Solutions

E – Excursion to Porvoo

Problem
Given a DAG with nodes x1, . . . , xn and edges xi → xi+1 with weight capacities,
calculate the smallest x1 → xn path distance for each query g , using only edges of
capacity c ≥ g .

Solution
By definition, a query g can traverse all edges a larger query g ′ ≥ g can traverse.
Use a two pointer solution:
Sort the queries and the edges by their capacities non-increasingly.

Problem Author: Andreas Grigorjew GCPC 2021 Solutions

E – Excursion to Porvoo

Problem
Given a DAG with nodes x1, . . . , xn and edges xi → xi+1 with weight capacities,
calculate the smallest x1 → xn path distance for each query g , using only edges of
capacity c ≥ g .

Solution
By definition, a query g can traverse all edges a larger query g ′ ≥ g can traverse.
Use a two pointer solution:
Sort the queries and the edges by their capacities non-increasingly.

Problem Author: Andreas Grigorjew GCPC 2021 Solutions

E – Excursion to Porvoo

Solution
Iterare through the sorted queries gi and add all the edges of capacity c ≥ gi to
the graph, which have not been added in prior iterations.
Each time we add an edge, the fastest path might change, and we update the
distance accordingly.
Return impossible as long as xn can not be reached from x1.
Runtime complexity: O(m log m + q log q).

Problem Author: Andreas Grigorjew GCPC 2021 Solutions

G – Grid Delivery

0 50 100 150 200 250 300
0

1

2

3

4

5

6

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Nathan Maier GCPC 2021 Solutions

G – Grid Delivery

Problem
Given an h × w grid of streets where parcels are located at some of the intersections
and you are only allowed to move south or east. How many trips, starting from the
northwesternmost intersection and ending at the most southeasternmost intersection,
do you have to take to collect all parcels?

Problem Author: Nathan Maier GCPC 2021 Solutions

G – Grid Delivery

Solution

1 6

7 8 9

10 11

2 3 4 5
Pickup the westernmost package reachable until you reach the southeasternmost
intersection.
Start over from nortwesternmost intersection.
Keep track of which interesctions you already visited.
Visiting each intersection at most once yields O(hw) runtime.

Problem Author: Nathan Maier GCPC 2021 Solutions

L – Looking for Waldo

0 50 100 150 200 250 300
0

1

2

3

4

5

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Michael Zündorf GCPC 2021 Solutions

L – Looking for Waldo

Problem
Given a w · h grid of letters, Find the smallest rectangle which contains at least one
W,A,L,D and O.

Solution
Let next[x , y , c] describe the next occurrence of character c in row y after x .

Problem Author: Michael Zündorf GCPC 2021 Solutions

A B C D E A B C D E
F G H I J F G H I J
K L M N O K L M N O
P Q R S T P Q R S T
V W X Y Z V W X Y Z

L – Looking for Waldo

Problem
Given a w · h grid of letters, Find the smallest rectangle which contains at least one
W,A,L,D and O.

Solution
Let next[x , y , c] describe the next occurrence of character c in row y after x .

1 2 3 4 5 6 7 8 9

1 W H E R E I S W A
next[1, 1, W] = 1
next[6, 1, W] = 8
next[9, 1, W] = inf

Problem Author: Michael Zündorf GCPC 2021 Solutions

L – Looking for Waldo

Problem
Given a w · h grid of letters, Find the smallest rectangle which contains at least one
W,A,L,D and O.

Solution
Let next[x , y , c] describe the next occurrence of character c in row y after x .
Fix the upper left corner x , y of the rectangle and find the smallest rectangle with
height 1, 2, . . .

For height 1 this is max(next[x , y , c]) for c ∈W , A, L, D, O.
For height 2 this is max(min(next[x , y , c], next[x , y + 1, c])).
For height h′, min(next[x , y , c], . . .) can only decrease to next[x , y + h′ − 1, c].

⇒ The inner minimums can be calculated in constant time. The outer maximum can
be evaluated in constant time too since it only contains 5 expressions.

Problem Author: Michael Zündorf GCPC 2021 Solutions

L – Looking for Waldo

Runtime
Why is this fast enough?

There are w · h corners we can choose.
The height can be up to h

⇒ The runtime is O(w · h · h). This sounds quadratic?

Note that n = w · h was bounded in the input.
If we assume h ≤ w the actual runtime is O(n

√
n) which is fast enough.

If h > w we can rotate or transpose the input to make h ≤ w .

Alternatives
A faster runtime can be achieved with a Divide and Conquer approach, which runs
in O(n log n).
However, this was not required.

Problem Author: Michael Zündorf GCPC 2021 Solutions

L – Looking for Waldo

Runtime
Why is this fast enough?

There are w · h corners we can choose.
The height can be up to h

⇒ The runtime is O(w · h · h). This sounds quadratic?
Note that n = w · h was bounded in the input.
If we assume h ≤ w the actual runtime is O(n

√
n) which is fast enough.

If h > w we can rotate or transpose the input to make h ≤ w .

Alternatives
A faster runtime can be achieved with a Divide and Conquer approach, which runs
in O(n log n).
However, this was not required.

Problem Author: Michael Zündorf GCPC 2021 Solutions

L – Looking for Waldo

Runtime
Why is this fast enough?

There are w · h corners we can choose.
The height can be up to h

⇒ The runtime is O(w · h · h). This sounds quadratic?
Note that n = w · h was bounded in the input.
If we assume h ≤ w the actual runtime is O(n

√
n) which is fast enough.

If h > w we can rotate or transpose the input to make h ≤ w .

Alternatives
A faster runtime can be achieved with a Divide and Conquer approach, which runs
in O(n log n).
However, this was not required.

Problem Author: Michael Zündorf GCPC 2021 Solutions

L – Looking for Waldo

Runtime
Why is this fast enough?

There are w · h corners we can choose.
The height can be up to h

⇒ The runtime is O(w · h · h). This sounds quadratic?
Note that n = w · h was bounded in the input.
If we assume h ≤ w the actual runtime is O(n

√
n) which is fast enough.

If h > w we can rotate or transpose the input to make h ≤ w .

Alternatives
A faster runtime can be achieved with a Divide and Conquer approach, which runs
in O(n log n).
However, this was not required.

Problem Author: Michael Zündorf GCPC 2021 Solutions

I – Index Case

0 50 100 150 200 250 300
0

1

2

3

4

5

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Michael Zündorf GCPC 2021 Solutions

I – Index Case

Problem
Given a cyclic cellular automaton with state s and transition function f , check if a
state x exists with f (x) = s.

Solution
First we choose a pair (x [0], x [1])
Starting from i = 1 until n (where i = n means i = 0)

We keep a list of possible states for the pair (x [i − 1], x [i])
(just the chosen possibility when i=1)
The pair (x [i + 1], x [i]) is possible iff f (x [i − 1], x [i], x [i + 1]) = s[i]

Check if the initial tuple is in our list after the last step.

If the initial tuple is in the list we found a previous assignment in O(n ·m3)
Since we need to consider all initial pairs, the total runtime is O(n ·m5)

Problem Author: Michael Zündorf GCPC 2021 Solutions

I – Index Case

Problem
Given a cyclic cellular automaton with state s and transition function f , check if a
state x exists with f (x) = s.

Solution
First we choose a pair (x [0], x [1])
Starting from i = 1 until n (where i = n means i = 0)

We keep a list of possible states for the pair (x [i − 1], x [i])
(just the chosen possibility when i=1)
The pair (x [i + 1], x [i]) is possible iff f (x [i − 1], x [i], x [i + 1]) = s[i]

Check if the initial tuple is in our list after the last step.

If the initial tuple is in the list we found a previous assignment in O(n ·m3)
Since we need to consider all initial pairs, the total runtime is O(n ·m5)

Problem Author: Michael Zündorf GCPC 2021 Solutions

I – Index Case

Problem
Given a cyclic cellular automaton with state s and transition function f , check if a
state x exists with f (x) = s.

Solution
First we choose a pair (x [0], x [1])
Starting from i = 1 until n (where i = n means i = 0)

We keep a list of possible states for the pair (x [i − 1], x [i])
(just the chosen possibility when i=1)
The pair (x [i + 1], x [i]) is possible iff f (x [i − 1], x [i], x [i + 1]) = s[i]

Check if the initial tuple is in our list after the last step.

If the initial tuple is in the list we found a previous assignment in O(n ·m3)

Since we need to consider all initial pairs, the total runtime is O(n ·m5)

Problem Author: Michael Zündorf GCPC 2021 Solutions

I – Index Case

Problem
Given a cyclic cellular automaton with state s and transition function f , check if a
state x exists with f (x) = s.

Solution
First we choose a pair (x [0], x [1])
Starting from i = 1 until n (where i = n means i = 0)

We keep a list of possible states for the pair (x [i − 1], x [i])
(just the chosen possibility when i=1)
The pair (x [i + 1], x [i]) is possible iff f (x [i − 1], x [i], x [i + 1]) = s[i]

Check if the initial tuple is in our list after the last step.

If the initial tuple is in the list we found a previous assignment in O(n ·m3)
Since we need to consider all initial pairs, the total runtime is O(n ·m5)

Problem Author: Michael Zündorf GCPC 2021 Solutions

N – Natural Navigation

0 50 100 150 200 250 300
0

2

4

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Gregor Matl GCPC 2021 Solutions

N – Natural Navigation

Problem
Given is a directed graph where each edge has one or multiple colours. At any vertex,
instead of directly choosing an edge to follow, you can only choose a colour and an
opponent will then select the worst possible choice among edges of that colour.
Compute the length of the shortest path leading from start to target vertex under
these conditions or decide that it’s impossible to get there.

Problem Author: Gregor Matl GCPC 2021 Solutions

N – Natural Navigation

Solution
Let’s split up edges with multiple colors into multiple edges with one colour each.
Let’s split each vertex into its min and max components:

v...
... ⇒ min...

max

max

...

Solve the problem backwards: What’s the distance to the target? Initially 0 for
the target and ∞ for all other vertices.
Update a min vertex when at least one successor has finite distance and a max
vertex when all successors have finite distance.
Always update a vertex with smallest distance ⇒ every vertex updated only once.
Use a priority queue (like in Dijkstra’s Algorithm) for runtime O(m log m).

Problem Author: Gregor Matl GCPC 2021 Solutions

D – Decrypting Zodiac

0 50 100 150 200 250 300
0

2

4

6

8

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Michael Zündorf GCPC 2021 Solutions

D – Decrypting Zodiac

Problem
Given an encrypted message and a its assumed decryption, at least how many letters
where encrypted wrong?
The encryption consists of two steps:

Caesar shift all letters by the same amount.
Split the text at any point and switch the two parts.

Solution
Note that the second operation is actually a shift/rotation of the text.

⇒ If we encode all chars unary both operations behave similar.
a is encoded as 1000. . . , b as 0100. . . and so on
A Caesar shift by 26 now corresponds to a Split before the last character.
However, a Caesar shift of something less can break everything i.e. za shifted by 1
result in a zero char and one char with two ones.

Problem Author: Michael Zündorf GCPC 2021 Solutions

D – Decrypting Zodiac

Problem
Given an encrypted message and a its assumed decryption, at least how many letters
where encrypted wrong?
The encryption consists of two steps:

Caesar shift all letters by the same amount.
Split the text at any point and switch the two parts.

Solution
Note that the second operation is actually a shift/rotation of the text.

⇒ If we encode all chars unary both operations behave similar.
a is encoded as 1000. . . , b as 0100. . . and so on
A Caesar shift by 26 now corresponds to a Split before the last character.

However, a Caesar shift of something less can break everything i.e. za shifted by 1
result in a zero char and one char with two ones.

Problem Author: Michael Zündorf GCPC 2021 Solutions

D – Decrypting Zodiac

Problem
Given an encrypted message and a its assumed decryption, at least how many letters
where encrypted wrong?
The encryption consists of two steps:

Caesar shift all letters by the same amount.
Split the text at any point and switch the two parts.

Solution
Note that the second operation is actually a shift/rotation of the text.

⇒ If we encode all chars unary both operations behave similar.
a is encoded as 1000. . . , b as 0100. . . and so on
A Caesar shift by 26 now corresponds to a Split before the last character.
However, a Caesar shift of something less can break everything i.e. za shifted by 1
result in a zero char and one char with two ones.

Problem Author: Michael Zündorf GCPC 2021 Solutions

D – Decrypting Zodiac

Solution
But we can fix the Caesar shift:

In the first string add an empty character after each character
i.e. "abc" becomes "a b c "
In the second string double each character
i.e. "abc" becomes "aabbcc"

A shift by a · 2 · 26 + b now corresponds to a Caesar shift by b and a rotation by a
in the unary encoding.

Now we only search a rotation which maximizes the number of bits in the bit-wise
and of those two strings. This is also called the cross-correlation of the two
strings.

Problem Author: Michael Zündorf GCPC 2021 Solutions

D – Decrypting Zodiac

Solution
But we can fix the Caesar shift:

In the first string add an empty character after each character
i.e. "abc" becomes "a b c "
In the second string double each character
i.e. "abc" becomes "aabbcc"

A shift by a · 2 · 26 + b now corresponds to a Caesar shift by b and a rotation by a
in the unary encoding.
Now we only search a rotation which maximizes the number of bits in the bit-wise
and of those two strings. This is also called the cross-correlation of the two
strings.

Problem Author: Michael Zündorf GCPC 2021 Solutions

D – Decrypting Zodiac

Solution
The cross correlation can be computed with the Fast Fourier transformation for
every rotation by reversing one of the strings.
Note that we are only interested in rotations of a · 2 · 26 + b with 0 ≤ b < 26.
The total runtime then is O(4 · 26 ∗ n ∗ log(n))

Problem Author: Michael Zündorf GCPC 2021 Solutions

F – Flappy Bird

0 50 100 150 200 250 300
0

2

4

6

8

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Florian Leimgruber GCPC 2021 Solutions

F – Flappy Bird

Problem
Given two points s and t in the plane and n intervals on the y -axis. Find the shortest
polyline connecting s and t, which passes through all intervals in increasing order of
their x coordinates.

1 2 3 4 5 6 7 8 9 10

−2

−1

1

2

3

x

y

Problem Author: Florian Leimgruber GCPC 2021 Solutions

F – Flappy Bird

This problem is related to convex hulls:
For intervals of the form (xi , yi ,1,∞) the answer are the points on the convex hull
of {s, t, (xi , yi ,1)}:

x

y

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

•

• •

•

•

Symmetrical for intervals of the form (xi ,−∞, yi ,2)

Problem Author: Florian Leimgruber GCPC 2021 Solutions

F – Flappy Bird

Idea
Compute upper and lower convex hull simultaneously in “Graham-scan style” and
merge appropriately.

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

•

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

Before adding the new interval (green
points), the hulls only share their
leftmost point
The suffix violating convexity is
popped (dashed-lines)
Updated hulls (green lines) intersect

Problem Author: Florian Leimgruber GCPC 2021 Solutions

F – Flappy Bird

Idea
Compute upper and lower convex hull simultaneously in “Graham-scan style” and
merge appropriately.

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

•

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

Before adding the new interval (green
points), the hulls only share their
leftmost point
The suffix violating convexity is
popped (dashed-lines)
Updated hulls (green lines) intersect

Problem Author: Florian Leimgruber GCPC 2021 Solutions

F – Flappy Bird

Observation
If the convex hulls intersect after adding an interval, exactly one of them became a line.

Merging hulls
Move leftmost point further right,
until top hull is above bottom hull
(cross product). The points
removed are part of the answer.

Runtime
Representing hulls using deques
yields O(n) runtime.

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

Problem Author: Florian Leimgruber GCPC 2021 Solutions

F – Flappy Bird

Observation
If the convex hulls intersect after adding an interval, exactly one of them became a line.

Merging hulls
Move leftmost point further right,
until top hull is above bottom hull
(cross product). The points
removed are part of the answer.

Runtime
Representing hulls using deques
yields O(n) runtime.

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

Problem Author: Florian Leimgruber GCPC 2021 Solutions

F – Flappy Bird

Observation
If the convex hulls intersect after adding an interval, exactly one of them became a line.

Merging hulls
Move leftmost point further right,
until top hull is above bottom hull
(cross product). The points
removed are part of the answer.

Runtime
Representing hulls using deques
yields O(n) runtime.

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

x

y

0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

•

•

•

•

• •

•

Problem Author: Florian Leimgruber GCPC 2021 Solutions

J – Joined Sessions

0 50 100 150 200 250 300
0

2

correct

wrong-answer

timelimit

run-error

compiler-error

no-output

frozen

Problem Author: Felicia Lucke GCPC 2021 Solutions

J – Joined Sessions

Problem
Given n intervals. We can merge two intervals if they intersect. A set of intervals S is
dominating if every interval is in S or intersects any interval in S. Find the minimum
number of unions of intervals that are necessary to reduce the size of a minimum
dominating set by at least one.

Problem Author: Felicia Lucke GCPC 2021 Solutions

J – Joined Sessions

Observations
3 unions are always sufficient.
For an interval Ij let last(j) be the index of the interval with the highest right
endpoint ending before Ij .
For an interval Ij let cont(j) be the index of the interval with the lowest left
endpoint that intersects Ij .
It is never necessary to merge an interval Ij with any other interval than cont(j).

Problem Author: Felicia Lucke GCPC 2021 Solutions

J – Joined Sessions

Solution
Sort the intervals in increasing order of their right endpoints.
Use dynamic programming, where dp(j , s) is the minimum number of intervals
needed to cover intervals I1, . . . , Ij using s unions.

dp(j , s) = min
(
dp(last(j), s) + 1, min{dp(contt(j), s − t) | 1 ≤ t ≤ s}

)
Take care of edge cases where there are multiple components or minimum
dominating sets of size 1.
Runtime: O(n log n).
Note: There is a greedy approach with the same runtime.

Problem Author: Felicia Lucke GCPC 2021 Solutions

Weiteres Programm

Jetzt: Auflösung des Scoreboards und Siegerehrung
Anschließend Treffen im WorkAdventure
Extended Contest mit den GCPC-Aufgaben (bald) unter

https://domjudge.cs.fau.de/

Danke für die Teilnahme!

GCPC 2021 Solutions

