
German Collegiate Programming
Contest 2021

June 26th

Problems
A Amusement Arcade
B Brexiting and Brentering
C Card Trading
D Decrypting Zodiac
E Excursion to Porvoo
F Flappy Bird
G Grid Delivery
H Hectic Harbour II
I Index Case
J Joined Sessions
K Killjoys’ Conference
L Looking for Waldo
M Monty’s Hall
N Natural Navigation

This page is intentionally left (almost) blank.

Problem A: Amusement Arcade
Julia wants to celebrate her birthday in a very special way this year – she wants to invite her
friends to an amusement arcade and play all the awesome video arcade games from her childhood
with them!

For this purpose she rented a venue with n arcades where all machines are arranged in one
straight line. Some of her friends are very vivid players who tend to scream whenever they
manage to beat the game. As this is very distracting for the others, Julia rented a venue that is so
large that in case the very first and very last machine is occupied, everyone else can be seated
such that there is always exactly one empty seat between any two neighbouring players.

Her friends, however, arrive at the amusement arcade one by one and do not know how many
people will come in total. To sit as comfortable as possible, they always choose an arcade that is
maximally far away from any other player. In case there are multiple machines that are equally
secluded, they choose one of them uniformly at random. After having taken a seat, they will
stay there until the end of the party.

As the host, Julia is the first person to arrive at the venue. Now she is wondering where she
should take a seat such that all of her friends find an arcade to play and there is exactly one
empty seat between neighbouring players once everyone is seated.

Input

The input consists of:
• One line with an integer n (1 ≤ n ≤ 1018), the number of arcades at the venue. The

arcades are labelled from 1 to n.
It is guaranteed that n is an odd number.

Output

If it is impossible to find a valid seating, output impossible. Otherwise, output an integer a
(1 ≤ a ≤ n), the label of the arcade at which Julia starts playing. In case there exist multiple
valid solutions, any of them will be accepted.

Sample Input 1 Sample Output 1

7 3

Sample Input 2 Sample Output 2

15 impossible

Notes

In the first sample there are n = 7 seats. There will be 4 players in total, i.e., Julia and three
guests. Julia takes a seat on machine 3. Her first guest will choose machine 7 as this machine is
maximally far away from Julia. Her second guest will either choose machine 1 or 5 as both are
equally secluded from the other players. Regardless of this choice, the last guest will choose the
other of these two machines in both cases. In the end, machines 1, 3, 5, and 7 are occupied and
there is one empty machine between any two neighbouring players.

GCPC 2021 – Problem A: Amusement Arcade 1

This page is intentionally left (almost) blank.

Problem B: Brexiting and Brentering
This is not a problem about Brexit. Or at least not about the social or economic implications of
Brexit. Instead, we – the Grammatical Correctness Policing Committee (GCPC) – want to focus
exclusively on the linguistic challenges posed by this combination of the words “Britain” and
the noun “exit”. We are very concerned about the ambiguity of this construction. When using
the term Brexit, it is not clear at all whether it is supposed to refer to to Great Britain or Brazil.
Or perhaps Bremen leaving the Bundesliga.

And it’s not just Brexit, you might also have heard of “Megxit” (having to do something with
the British royal family) and similar constructions.

Looking ahead, we want to avoid a similar disaster in the future. For that purpose we, as a
European agency with German roots, would like to implement some standardisation. We have
focused on the act of entering. If a subject (a person, an organization, a plant, etc.) enters (or
possibly reenters) something, our leading linguistic scientists suggest we look for the last vowel
in the subjects name (a, e, i, o and u are considered vowels). We cut off any letters after this
last vowel and add the ending ntry instead. Here are some examples:

• If Britain were to reenter the European Union, we would call it “Britaintry”1.
• If Canada were to enter, say, the NWERC region, that would be a “Canadantry”.
• And whenever a person named “Paul” enters someplace, we clearly have a “Pauntry”.

Given a subject’s name, determine how the act of entering should be called for this subject.

Input

The input consists of:
• One line with a string s (1 ≤ |s| ≤ 50), the name of the subject. This name can refer to

any person, animal, country, organization, etc.
All characters in s are uppercase letters A-Z or lowercase letters a-z. The first letter may be
uppercase or lowercase, all other letters are lowercase. s will contain at least one lowercase
vowel.

Output

Output one single word, the term for the act of the subject entering.

Sample Input 1 Sample Output 1

Britain Britaintry

Sample Input 2 Sample Output 2

Canada Canadantry

Sample Input 3 Sample Output 3

Paul Pauntry

1We are convinced this is going to happen, because Brexit must have been such a joy for the people of Britain
(otherwise, their political leaders certainly would not have taken this step). When something brings so much joy to
everybody, you want to repeat it. But to repeat Brexit, there has to be Britaintry first!

GCPC 2021 – Problem B: Brexiting and Brentering 3

This page is intentionally left (almost) blank.

Problem C: Card Trading
Recently, I got into playing the trading card game Wizardry – The Meeting. And since I really
wanted to build an awesome deck, I decided to search online for only the best cards. It turns
out most of those cards are quite expensive and can only be acquired by insane luck, when
purchasing a random set of cards, or by bidding in online auctions. As auctions are a huge
time sink and I really rather wanted to play instead of bidding the whole day, I came up with a
different idea: A trading card marketplace.

Each card type is produced in bulk, so a buyer does not really care from which seller they buy
a specific card. Therefore, the idea is to create one web page for each card type and users can
set buy and sell offers. Take the card “Green Mana” for instance. If you wanted to buy one,
you could create a buy offer, e.g. for 10.00¤. This offer means that you are willing to buy the
card for 10.00¤ or less (if there is a seller for less). On the other hand, if you wanted to sell
one “Green Mana” card, you could create a sell offer, e.g. for 12.01¤. This offer means you are
willing to sell your card for 12.01¤ or more (if there is a buyer for more).

Now, every couple of seconds, the website automatically calculates a card price based on
both types of offers. It then considers only those offers that are compatible with this price (as
described above) and satisfies as many of those as possible.

As an aspiring entrepreneur, I decided that I deserve a cut of every sale happening on the website.
But I have a little trouble to come up with an algorithm that determines the price such that the
turnover, i.e. the price times the number of successful sales, is as high as possible (which would
mean my cut being as high as possible).

Input

The input consists of:
• One line with one integer n (1 ≤ n ≤ 105), the number of different prices at which offers

exist.
• n lines, each containing one real number p and two integers b and s (0 < p ≤ 104, 0 ≤
b, s ≤ 106), the price of the offers with exactly two decimal places, the number of buy
offers at this price and the number of sell offers at this price.

It is guaranteed that each price in the input has at least one buy or sell offer and that no price
appears more than once.

Output

If no price exists, such that at least one sale occurs, output “impossible”. Otherwise, output
the price resulting in the highest turnover and that turnover itself. If multiple such prices exist,
output any. Output both numbers to exactly two decimal places.

Sample Input 1 Sample Output 1

5
12.00 0 3
11.99 2 0
11.98 5 0
10.00 1 0
12.01 0 6

impossible

GCPC 2021 – Problem C: Card Trading 5

Sample Input 2 Sample Output 2

6
2.85 14 0
4.50 0 1
5.26 3 3
6.17 1 0
14.78 0 2
21.04 1 0

5.26 21.04

Sample Input 3 Sample Output 3

6
2.85 14 0
4.50 0 1
5.26 2 3
14.78 0 2
1.83 0 1
21.04 1 0

21.04 21.04

Notes

In the second sample case, the optimal card price is 5.26¤, as it results in the highest possible
turnover of 21.04¤, with four sales happening. In total, there are five buyers willing to pay at
least 5.26¤: Three are willing to pay exactly 5.26¤, one is willing to pay 6.17¤ and one is
even willing to pay 21.04¤. On the other hand, there are just four sellers willing to part with
their card at 5.26¤: Three at exactly this price and one would already be happy with 4.50¤.

Note that there is an alternative solution: at a card price of 21.04¤, there will be exactly one
sale, resulting in the same optimal turnover.

GCPC 2021 – Problem C: Card Trading 6

Problem D: Decrypting Zodiac

Original message from Zodiac

In the late 1960s, a serial killer committed his monstrous deeds.
He was neither caught nor was he identified and due to a series
of cryptic letters he sent to the press he was called Zodiac. It
was assumed that those letters contain the killer’s real name,
but even to this day not all of them have been decrypted. One
of the reasons for this is that the encrypted messages contain
mistakes. It is not known if Zodiac made those mistakes on
purpose to make the decryption harder.

For one of his first letters he used the following two step
encryption scheme.2 First, he applied a Caesar cipher which means that he replaced each letter
with the one that comes k steps later in the alphabet, where k is a fixed number between 0 and
25 inclusive. Note that for this step it is assumed that after z the alphabet starts again with a. In
the second step, he cut the message into two parts at an arbitrary position and swapped the parts.
It is allowed for one of the two parts to be empty, in which case the message did not change
during this second step.

Normally, a simple brute force search could be used to decrypt the message. However, to do
this, one needs to automatically check if a message makes sense. Since Zodiac might have made
some mistakes during the first step of the encryption, this is not easy to decide.

For this reason, you decided to try another approach. You want to try meaningful candidate
sentences and encrypt them and then count how many mistakes would be required to make them
match with Zodiac’s encrypted message.

Input

The input consists of:
• One line with a single integer n (1 ≤ n ≤ 1.5 · 105), the length of the messages.
• Two lines each with one string of length n. The first string is the encrypted message and

the second string is your guess for the decrypted message.
Both strings consist of lowercase letters a-z only.

Output

Output a single integer, the minimal number of mistakes Zodiac must have made during the
encryption, assuming you correctly guessed the decrypted message.

Sample Input 1 Sample Output 1

6
drhmex
zodiac

2

2He did in fact not.

GCPC 2021 – Problem D: Decrypting Zodiac 7

Sample Input 2 Sample Output 2

8
dicepara
paradise

1

Sample Input 3 Sample Output 3

13
lvlvdvdqsonwk
thisisasample

2

Notes

In the first sample the message can be encrypted by Caesar shifting each letter by four, resulting
in dshmeg. After this, all letters match except for the second and sixth.

In the second example we can Caesar shift by zero, then split the message in the middle and
swap both halves. After this, there is only a single mismatch: s↔ c.

In the third example the message can be encrypted by Caesar shifting by three in the first
step, resulting in the message wklvlvdvdpsoh. Then, the first two letters can be cut off and
swapped with the rest of the string to create lvlvdvdpsohwk. After this, only two letters will
differ: p↔ q and n↔ h.

GCPC 2021 – Problem D: Decrypting Zodiac 8

Problem E: Excursion to Porvoo
It is a lovely summer day, and Alice wants to do a day trip. She lives in Tampere, and wants to
travel to Porvoo to enjoy the Old Town and the surrounding nature. Alice does not only love
travelling, but also planning.

She has created a map of the most beautiful paths to Porvoo. On her trip she needs to visit n
cities in order, where Tampere is the first city and Porvoo is the last city. The cities are connected
by roads, with each road connecting two consecutive cities, and there is always at least one road
between each pair of consecutive cities.

When driving from one city to the next, Alice needs to choose which road to take. Some of these
roads have a tarmac surface, while others are just gravel roads and some roads have bridges
which will not support vehicles that are too heavy. For each road it is known how long it takes
to traverse it and what is the maximal weight of vehicles that can safely drive on it.

🏠 2

d = 200, c = 30

d = 5000, c = 33 🏞3

d = 200, c = 31

d = 5000, c = 33
4

d = 200, c = 32

d = 5000, c = 33
d = 200, c = 33

Figure E.1: Illustration of the second sample input. The red path from Tampere to
Porvoo is the optimal choice for a car of weight 31.

Alice collects many different cars of different weights, but she is not sure yet which car she will
use for the day trip. As she wants to enjoy as much time in Porvoo as possible, she wants you to
help her find the minimal travel time for each car.

Input

The input consists of:
• Two integers n and m (2 ≤ n ≤ 105, n − 1 ≤ m ≤ 105), the number of cities and the

number of connections, respectively. The cities are numbered from 1 to n, Tampere is city
1, and Porvoo is city n.

• m lines, each containing three integers i, d and c (1 ≤ i < n, 1 ≤ d ≤ 104, 1 ≤ c ≤ 106),
which each describe a connection between city i and city i+ 1 which takes d minutes to
traverse and can can be used by vehicles of weight c kilograms or less.

• One integer q (1 ≤ q ≤ 105), the number of cars that Alice has collected.
• q lines, where the ith line contains one integer wi (1 ≤ wi ≤ 106), the weight of the ith

car in kilograms.
There is at least one connection from city i to city i+ 1 for each i (1 ≤ i < n).

Output

Output q lines, where the ith line describes the shortest time in minutes Alice needs to drive to
get from Tampere to Porvoo with the ith car. If there is no feasible path for the ith car, output
impossible.

GCPC 2021 – Problem E: Excursion to Porvoo 9

Sample Input 1 Sample Output 1

2 2
1 100 300
1 1 30
5
400
500
300
20
1

impossible
impossible
100
1
1

Sample Input 2 Sample Output 2

5 7
1 200 30
2 200 31
3 200 32
4 200 33
1 5000 33
2 5000 33
3 5000 33
3
30
31
33

800
5600
15200

Sample Input 3 Sample Output 3

2 3
1 3 3
1 4 2
1 2 1
3
1
3
2

2
3
3

GCPC 2021 – Problem E: Excursion to Porvoo 10

Problem F: Flappy Bird
Help the bird Faby to navigate through a sequence of n pairs of pipes, by finding the shortest
line he can fly on to reach his destination. For simplicity, we represent Faby as a single point in
the plane and assume every pipe has width zero. This way, the gap between every pair of pipes
can be represented as an interval on the y axis. The bird starts out at s = (xs, ys) and his goal is
to reach t = (xt, yt). Find the shortest line from s to t, passing through all intervals in between
in increasing order of their x coordinates.

1 2 3 4 5 6 7 8 9 10

−2

−1

1

2

3

x

y

Figure F.1: Visualisation of the second sample input. The red lines represent the
intervals and the black line the shortest possible path. Faby and the black dots are the
points in the output. Note that (2, 1) can optionally be included in the output too.

Input

The input consists of:
• One line with four integers xs, ys, xt and yt (−109 ≤ xs, ys, xt, yt ≤ 109), the start and

end points.
• One line with an integer n (0 ≤ n ≤ 106), the number of intervals.
• n lines, the ith of which contains three integer xi, yi,1 and yi,2 (−109 ≤ xi, yi,1, yi,2 ≤ 109,
yi,1 < yi,2), the intervals.

It can be assumed that xs < x1 < · · · < xn < xt.

Output

Output a sequence of k (2 ≤ k ≤ n+ 2) points p1, . . . , pk, one per line, such that:
• All points have integer coordinates.
• p1 = s and pk = t.
• Let P be the path obtained by connecting pipi+1 for all 1 ≤ i < k. Then:

– P passes through all intervals in increasing order of their x coordinates.
– The length of P is minimal.

If there are multiple valid solutions, you may output any one of them.

GCPC 2021 – Problem F: Flappy Bird 11

Sample Input 1 Sample Output 1

0 0 10 0
1
5 -10 10

0 0
10 0

Sample Input 2 Sample Output 2

0 0 10 0
4
2 1 3
4 2 3
7 0 2
9 -2 -1

0 0
4 2
9 -1
10 0

GCPC 2021 – Problem F: Flappy Bird 12

Problem G: Grid Delivery
Your friend Ellie owns a local parcel delivery business called Grid City Parcel Courier (GCPC)
which operates in Grid City, a town where all houses are aligned on a rectangular grid of streets.
Each house is placed at the intersection of two streets, one running in north-south direction
(vertically) and one running in east-west direction (horizontally). There are w vertical streets
and h horizontal streets, resulting in a h× w grid of houses.

To grow her business, Ellie wants to start offering parcel pickup too. However, the mayor of
Grid City recently decided that all streets will be one-way streets during the day to combat traffic
jams. During this time, the streets of Grid City can only be passed from north to south or west
to east, respectively.

Garage

Logistics Center
Figure G.1: Visualization of the grid of one-way streets given in the first sample input.

Ellie already rented a large garage located at the city’s northwesternmost intersection, from
which her drivers will start their journeys to collect parcels. She asked you to help her figure out
how many drivers she needs to hire to collect all parcels during the day and bring them to her
logistics center located at the city’s southeasternmost intersection.

Input

The input consists of:
• One line with two integers h and w (1 ≤ h,w ≤ 2 000), the height and width of the grid.
• h lines, each with w characters which are either C, indicating the house of a customer

where a parcel has to be collected, or _, indicating a house where nothing has to be
collected.

Output

Output the minimal number of drivers required to collect all parcels while all streets are one-way
streets.

Sample Input 1 Sample Output 1

4 4
__C_
C_C_
_C_C
_CCC

2

GCPC 2021 – Problem G: Grid Delivery 13

Sample Input 2 Sample Output 2

4 6
CC____
_CCC__
___C_C
C__CCC

2

Sample Input 3 Sample Output 3

3 5
CC__C
_C_CC
CCCCC

3

GCPC 2021 – Problem G: Grid Delivery 14

Problem H: Hectic Harbour II
An upcycled shipping container makes a good site to open a pop-up store in a trendy part of
town. Such a business comes with its own risks – for example, this morning a local freight
company mistook your premises for one of their crates and sent it to the shipyard for loading.

Your crate is now sitting in the shipyard in one of two stacks ready for loading onto the ship.
Each crate except yours has its own tracking number.

2

4

1

5

6

3

Figure H.1: Illustration of Sample Input 2. Your business is in the unmarked crate.

The system for loading crates is automated and proceeds in a preset order. First, the crate with
the next tracking number is uncovered by picking up all of the crates on top, one-by-one, and
moving every single one across to the other stack individually. Then the crate is taken to the
ship. Since your crate is not part of this order, it is generally ignored and will not be loaded.

After loading a crate, some time is spent securing the whole cargo on board. This is your chance
to recover your container – if it is on top of one of the stacks, you will have just enough time to
slide it off and get it back.

How many such opportunities will you have in total?

Input

The input consists of:
• One line with three integers n, s1 and s2 (2 ≤ s1, s2 ≤ 2 · 105, s1 + s2 = n + 1), the

number of crates with a tracking number, the number of crates on the first stack, and the
number of crates on the second stack respectively.

• One line containing s1 integers, the tracking numbers of the crates on the first stack, in
order from bottom to top.

• One line containing s2 integers, the tracking numbers of the crates on the second stack, in
order from bottom to top.

The crates with tracking number are numbered from 1 to n and are removed from the stacks
in that order. Your crate has tracking number 0 and will never be on top of one of the stacks
initially.

Output

Output the number of occasions at which your crate is on top of one of the stacks and the crane
is busy loading a crate.

GCPC 2021 – Problem H: Hectic Harbour II 15

Sample Input 1 Sample Output 1

4 3 2
2 0 3
1 4

3

Sample Input 2 Sample Output 2

6 4 3
2 4 0 1
6 3 5

4

2

4

6

3

5

1

6

3

5

4

2

4

5

6

3

6

5

4

6

5 6

Figure H.2: Step by step illustration of Sample Input 2. There are 4 occasions at which
your crate is on top of one of the stacks, while any of crates 1, 4, 5 or 6 is loaded.

GCPC 2021 – Problem H: Hectic Harbour II 16

Problem I: Index Case
The epidemiologist W. Andy wants to find the index case of an ongoing crisis. To do this, he
modelled the city of the outbreak and its n residents with a cellular automaton. The city is
represented by n cells numbered from 1 to n and each cell has two neighbouring cells, one to its
left and one to its right. The left neighbour of cell i is cell i− 1 and the right neighbour is cell
i+ 1. Additionally, the left neighbour of cell 1 is cell n and the right neighbour of cell n is cell
1. Thus, the city and the corresponding automaton form a simple cycle.

Each cell contains an integer between 1 and m which represents how likely it is that this person
is infected. Since the virus can only be transmitted by personal contact, the value in the ith
cell on day d only depends on the values of its neighbours and itself on the previous day. If we
denote this value by sd[i], then the outbreak can be simulated by a function f using the formula:

sd[i] = f
(
sd−1[i− 1], sd−1[i], sd−1[i+ 1]

)
.

Note that as the city is cyclic both i+ 1 and i− 1 are calculated modulo n.

Andy wants to find the index case, so he first has to find s0, the state of the city on day zero.
This poses a problem, however, as it is not known on which day the crisis started. Right now,
Andy believes that he accomplished the task and found the state s0, but you are not convinced.
Therefore, you want to check if there may be a state previous to the initial state proposed by
Andy, i.e. whether there exists any state s−1 that gets transformed into s0 by applying f .

Input

The input consists of:
• One line with two integers n and m (3 ≤ n ≤ 200, 2 ≤ m ≤ 10), the number of cells and

the number of states.
• m3 lines describing the values f(x, y, z) (1 ≤ f(x, y, z) ≤ m for each 1 ≤ x, y, z ≤ m)

of the function f modelling the automaton. The values are given in lexicographic order of
the arguments: The first value is f(1, 1, 1), the next is f(1, 1, 2), and so on until f(1, 1,m),
followed by f(1, 2, 1) and so forth. The last value is f(m,m,m).

• One line with n integers s0[1], . . . , s0[n] (1 ≤ s0[i] ≤ m for each i), the initial state that
has been proposed by Andy.

Output

Output yes if there exists at least one possible previous state and no otherwise.

Sample Input 1 Sample Output 1

4 2
1
2
1
2
2
1
2
1
1 2 1 2

yes

GCPC 2021 – Problem I: Index Case 17

Sample Input 2 Sample Output 2

6 2
1
2
1
2
2
1
2
1
1 2 1 2 1 2

no

Sample Input 3 Sample Output 3

10 2
1
2
1
1
2
2
2
2
1 2 2 2 1 2 1 2 1 2

yes

GCPC 2021 – Problem I: Index Case 18

Problem J: Joined Sessions
Lucy is very lazy. Her boss asked her to go to a conference and of course she wants her to go to
as many meetings as possible. But Lucy is lazy and so she decides to choose her meetings such
that all other meetings overlap with at least one of the meetings she is attending. This way, her
boss cannot complain as there is no way for her to attend additional meetings.

While reading the schedule of the conference, Lucy finds out that even with this approach of
choosing the meetings there are quite many meetings she has to attend. Luckily, her good friend
Max is one of the organisers of the conference and in particular responsible for the timetable.
Max is unfortunately not able to cancel meetings or to reschedule them, but he can help Lucy in
another way.

Since the meetings are normally boring, nobody will pay too much attention if the topic changes.
Therefore, whenever there are two meetings that overlap, he can combine them into a single
meeting instead. Two meetings a and b overlap if start(a) ≤ start(b) ≤ end(a) or vice versa,
and when they are combined the new meeting will start at time min(start(a), start(b)) and end
at time max(end(a), end(b)). Max can then repeat this merging process and it is even possible
to further combine these combined meetings with other meetings. Non-overlapping meetings
cannot be combined as then people would notice that someone is tampering with the schedule.

Lucy now wonders if she can reduce the number of meetings she has to attend with this method.
If it is possible, how many such merges are necessary to reduce this number by at least one?

Input

The input consists of:
• One line with an integer n (2 ≤ n ≤ 106), the number of meetings.
• n lines describing the meetings, each with two integers a and b (0 ≤ a ≤ b ≤ 109), where
a is the start time and b the end time of one of the given meetings.

Output

If it is possible to reduce the number of meetings Lucy has to attend, then output the minimum
number of merging operations needed to do so. Otherwise output impossible.

Sample Input 1 Sample Output 1

4
1 3
2 5
4 7
6 9

1

Sample Input 2 Sample Output 2

5
1 3
4 7
8 10
2 5
6 9

2

GCPC 2021 – Problem J: Joined Sessions 19

Sample Input 3 Sample Output 3

3
1 2
2 3
3 4

impossible

GCPC 2021 – Problem J: Joined Sessions 20

Problem K: Killjoys’ Conference
The General Counsel for Peaceful Congregations (GCPC) has a very, very stressful job. Almost
every day they are approached by someone who has to organise a meeting whose attendees do
not really get along. More specifically, in any group of attendees there may be several pairs of
people who are known to dislike each other. Nevertheless people sometimes need to meet, so
the general strategy of the GCPC is to split up the meeting attendees into two groups. These
groups will then meet in different rooms and GCPC employees will deliver messages back and
forth between the two rooms. Let’s call these two rooms the East and the West room – for no
particular reason. To ensure peaceful and productive meetings, the GCPC assigns people to the
East and West room such that no two people in each room dislike each other.

Over time, the process of assigning people to the East and West rooms has become a bit tedious,
so you decided to undertake a little experiment. Some of the GCPC’s clients schedule the same
meeting with the exact same people every year. To keep things interesting, you want to use a
new assignment of people to the East and West rooms for each meeting. If the editions of the
meeting are numbered starting from 1, what is the number of the first meeting where you are
forced to reuse an assignment of people that you have already used before? Note that simply
swapping the rooms, i.e. assigning the people from the East room to the West room and vice
versa, is not considered a different assignment – after all, the same people will meet. Since your
investigation will almost certainly only be of an academic nature, you are not interested in the
exact value. It will suffice to find the remainder when dividing the result by a given odd prime
number p.

Input

The input consists of:
• One line with three integers n, m and p (1 ≤ n ≤ 106, 0 ≤ m ≤ 106, 3 ≤ p ≤ 109),

where n is the number of people attending the meeting, m is the number of known dislikes
between them and p is an odd prime number. The attendees of the meeting are numbered
from 1 to n, inclusive.

• m lines, each with two integers a and b (1 ≤ a, b ≤ n, a 6= b), specifying that attendees a
and b dislike each other.

Output

Output one integer, the number of the first edition where an assignment must re-occur. Output
this number modulo p. If it is impossible to assign the people to the East and West rooms such
that no two people disliking each other are placed in the same room, output impossible.

Sample Input 1 Sample Output 1

4 2 11
1 2
3 4

3

Sample Input 2 Sample Output 2

5 2 3
1 2
3 4

2

GCPC 2021 – Problem K: Killjoys’ Conference 21

Sample Input 3 Sample Output 3

3 3 11
1 2
2 3
3 1

impossible

Sample Input 4 Sample Output 4

100 0 13 9

Notes

In the first sample, you could use the following room assignments:

East West
Year 1 1,3 2,4
Year 2 1,4 2,3
Year 3 2,4 1,3

In the third year the groups are the same as in the first year, and there is no set of assignments
that avoids repetitions this for longer than that.

In the second sample, an optimal set of assignments is given as follows:

East West
Year 1 1,3,5 2,4
Year 2 1,4,5 2,3
Year 3 2,4,5 1,3
Year 4 2,3,5 1,4
Year 5 1,3,5 2,4

GCPC 2021 – Problem K: Killjoys’ Conference 22

Problem L: Looking for Waldo
You may know the game Where is Waldo?. In this game you need to find a person named Waldo
in a crowd of people. This problem is kind of similar. You need to find an axis-aligned rectangle
of minimal area which contains the letters W, A, L, D and O and those letters are hidden in a
crowd of other letters.

A B C D E A B C D E
F G H I J F G H I J
K L M N O K L M N O
P Q R S T P Q R S T
V W X Y Z V W X Y Z

Figure L.1: Illustration of the second sample case.

Input

The input consists of:
• One line with two integers h and w (1 ≤ h,w ≤ 105, h · w ≤ 105), the height and width

of the grid of letters.
• h lines, each with w upper case letters A-Z, the grid of letters.

Output

Output the area of the smallest axis-aligned rectangle which contains at least one of each of the
letters W, A, L, D and O. If there is no rectangle containing those letters, output impossible.

Sample Input 1 Sample Output 1

5 5
ABCDE
FGHIJ
KLMNO
PQRST
VWXYZ

25

Sample Input 2 Sample Output 2

5 10
ABCDEABCDE
FGHIJFGHIJ
KLMNOKLMNO
PQRSTPQRST
VWXYZVWXYZ

20

GCPC 2021 – Problem L: Looking for Waldo 23

Sample Input 3 Sample Output 3

5 10
WAALDLODOW
AWWLAOODOW
LOLADOWALO
ADALLLWWOL
WWOOAAAALO

5

Sample Input 4 Sample Output 4

2 3
WAL
TER

impossible

GCPC 2021 – Problem L: Looking for Waldo 24

Problem M: Monty’s Hall

This could be you if you choose poorly.
Photo by Armin Kübelbeck, cc-by-sa, Wikimedia Commons

You have explored the deep catacombs under a long lost city
for the past couple of hours and finally you have reached their
end: The hall of the undead wizard Monty. His restless spirit
materialises in front of you and you prepare for battle.

However, it turns out that you are the first explorer to find him in
over a hundred years, so he has grown incredibly bored. Instead
of a fight, he offers to play a game for his artefacts. The hall
has d closed doors, but only one of them leads to the artefacts
(Monty knows which one it is, of course). The procedure is as
follows:

1. You choose s closed doors.

2. Monty opens e doors that were not selected by you and lead to empty rooms.

3. Among the remaining closed doors, you may change your selection of s doors however
you want (you can even stay with your current selection if you wish to).

4. Monty reveals which door leads to the room with his artefacts.

If the door with the artefacts is among your selected doors, you win and can take them with you
unscathed. If not, Monty will transform you into a goat. So you better hope your luck is on
point today.

Input

The input consists of:
• One line with three integers d, s and e (1 ≤ d, s, e ≤ 106, s+ e < d), the number of doors

in Monty’s hall, the number of doors you are allowed to select and the number of doors
Monty opens in step 2.

Output

Output your chance to win at Monty’s game when playing optimally. Your answer should have
an absolute or relative error of at most 10−6.

Sample Input 1 Sample Output 1

3 1 1 0.666667

Sample Input 2 Sample Output 2

8 4 2 0.75

Sample Input 3 Sample Output 3

15 4 2 0.32592593

GCPC 2021 – Problem M: Monty’s Hall 25

https://creativecommons.org/licenses/by-sa/3.0/
https://en.wikipedia.org/wiki/File:Hausziege_04.jpg

This page is intentionally left (almost) blank.

Problem N: Natural Navigation

This majestic footpath has the colours red, white, purple and green.
SOURCE: Botanical Garden München-Nymphenburg.

You want to build an app to help people navigate
through a large botanic garden. This is difficult, because
there are many winding footpaths and intersections of-
fering many choices, making traditional directions such
as “turn right” or “move further north” unsuitable. In-
stead, the app should rely on the garden’s greatest re-
source: the numerous exotic plants and their diverse
colours. Whenever a user is at an intersection, the app
will know where they are and will display one particular
colour accordingly. The user will then follow a footpath
where this colour is visible. If the colour can be spotted
along multiple footpaths originating from the intersection, the user is free to choose any of these
footpaths.

You have been given a perfect model of the botanic garden, consisting of n intersections
(numbered from 1 to n) and m footpaths going between those. To keep order, each footpath
can only be used in the given direction. Currently, the plants are exhibiting k different colours
(numbered from 1 to k) and for each footpath, you are given a list of all the colours that are visible
along it when viewed from the intersection where it starts. A user is currently at intersection
1 and wants to navigate to intersection n. You can assume that the user will follow the app’s
directions perfectly, but whenever faced with multiple options (because the given colour is
visible along multiple footpaths), you have to assume they will make the worst possible choice.
How long will it take to reach the target when your app gives the best possible instructions?

Input

The input consists of:
• A line containing the number of intersections n (1 ≤ n ≤ 5 ·105), the number of footpaths
m (1 ≤ m ≤ 5 · 105) and the number of distinct colours k (1 ≤ k ≤ 1 000).

• m pairs of lines describing the directed footpaths, each formatted as follows:
– One line with three integers u, v and t (1 ≤ u, v ≤ n, 1 ≤ t ≤ 106), meaning that

the footpath leads from intersection u to intersection v and it takes t seconds to walk
along this footpath.

– One line with an integer ` (1 ≤ ` ≤ k), followed by ` distinct integers c1, . . . , c`
(1 ≤ ci ≤ k for each i), listing the colours that appear along this footpath.

The sum of ` over all footpaths does not exceed 5 · 105. Note that, as you would imagine in a
botanic garden, a footpath can lead back to the intersection it started from and multiple footpaths
can exist between a pair of intersections. Moreover, it is not guaranteed that each intersection
can be reached via the footpaths.

Output

If it is impossible to lead the user to intersection n, output impossible. Otherwise output a
single integer, the time it will take to reach the target in seconds. We are only considering the
time spent walking along the footpaths.

GCPC 2021 – Problem N: Natural Navigation 27

Sample Input 1 Sample Output 1

4 6 2
1 2 6
1 1
1 3 3
1 2
2 3 5
1 2
2 4 8
1 1
3 1 4
2 1 2
3 4 3
1 1

14

Sample Input 2 Sample Output 2

3 4 3
1 2 300
2 1 2
2 1 2000
2 3 1
1 3 80
2 2 1
2 2 42
1 2

impossible

GCPC 2021 – Problem N: Natural Navigation 28

